Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A first-order primal-dual method with adaptivity to local smoothness (2110.15148v1)

Published 28 Oct 2021 in math.OC and cs.LG

Abstract: We consider the problem of finding a saddle point for the convex-concave objective $\min_x \max_y f(x) + \langle Ax, y\rangle - g*(y)$, where $f$ is a convex function with locally Lipschitz gradient and $g$ is convex and possibly non-smooth. We propose an adaptive version of the Condat-V~u algorithm, which alternates between primal gradient steps and dual proximal steps. The method achieves stepsize adaptivity through a simple rule involving $|A|$ and the norm of recently computed gradients of $f$. Under standard assumptions, we prove an $\mathcal{O}(k{-1})$ ergodic convergence rate. Furthermore, when $f$ is also locally strongly convex and $A$ has full row rank we show that our method converges with a linear rate. Numerical experiments are provided for illustrating the practical performance of the algorithm.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.