Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

End-to-End Speech Emotion Recognition: Challenges of Real-Life Emergency Call Centers Data Recordings (2110.14957v1)

Published 28 Oct 2021 in cs.AI, cs.CL, cs.SD, eess.AS, and stat.ML

Abstract: Recognizing a speaker's emotion from their speech can be a key element in emergency call centers. End-to-end deep learning systems for speech emotion recognition now achieve equivalent or even better results than conventional machine learning approaches. In this paper, in order to validate the performance of our neural network architecture for emotion recognition from speech, we first trained and tested it on the widely used corpus accessible by the community, IEMOCAP. We then used the same architecture as the real life corpus, CEMO, composed of 440 dialogs (2h16m) from 485 speakers. The most frequent emotions expressed by callers in these real life emergency dialogues are fear, anger and positive emotions such as relief. In the IEMOCAP general topic conversations, the most frequent emotions are sadness, anger and happiness. Using the same end-to-end deep learning architecture, an Unweighted Accuracy Recall (UA) of 63% is obtained on IEMOCAP and a UA of 45.6% on CEMO, each with 4 classes. Using only 2 classes (Anger, Neutral), the results for CEMO are 76.9% UA compared to 81.1% UA for IEMOCAP. We expect that these encouraging results with CEMO can be improved by combining the audio channel with the linguistic channel. Real-life emotions are clearly more complex than acted ones, mainly due to the large diversity of emotional expressions of speakers. Index Terms-emotion detection, end-to-end deep learning architecture, call center, real-life database, complex emotions.

Citations (27)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.