Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Modeling, simulation, and optimization of a monopod hopping on yielding terrain (2110.14867v1)

Published 28 Oct 2021 in cs.RO

Abstract: Legged locomotion on deformable terrain is a challenging and open robo-physics problem since the uncertainty in terrain dynamics introduced by ground deformation complicates the dynamical modelling and control methods. Moreover, learning how (e.g. what controls and mechanisms) to move efficiently and stably on soft ground is a bigger issue. This work seeks to control a 1D monopod hopper to jump to desired height. To achieve this goal, I first set up and validate a discrete element method (DEM) based soft ground simulation environment of a spherical granular material. With this simulation environment, I generate resistive force theory (RFT) based models of the ground reaction force. Then I use the RFT model to develop a feedforward force control for this robot. In the DEM simulation, I use feedback control to compensate for variations in the ground reaction force from the RFT model predictions. With the feedback control, the robot tracks the desired trajectories well and reaches the desired height after five hops. It reduces the apex position errors a lot more than a pure feedforward control. I also change the area of the robots square foot from 1cm2 to 49cm2. The feedback controller is able to deal with the ground reaction force fluctuations even when the foot dimensions are on the order of a grain diameter.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.