Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deciphering the Language of Nature: A transformer-based language model for deleterious mutations in proteins (2110.14746v4)

Published 27 Oct 2021 in q-bio.GN, cs.LG, and q-bio.QM

Abstract: Various machine-learning models, including deep neural network models, have already been developed to predict deleteriousness of missense (non-synonymous) mutations. Potential improvements to the current state of the art, however, may still benefit from a fresh look at the biological problem using more sophisticated self-adaptive machine-learning approaches. Recent advances in the natural language processing field show transformer models-a type of deep neural network-to be particularly powerful at modeling sequence information with context dependence. In this study, we introduce MutFormer, a transformer-based model for the prediction of deleterious missense mutations, which uses reference and mutated protein sequences from the human genome as the primary features. MutFormer takes advantage of a combination of self-attention layers and convolutional layers to learn both long-range and short-range dependencies between amino acid mutations in a protein sequence. In this study, we first pre-trained MutFormer on reference protein sequences and mutated protein sequences resulting from common genetic variants observed in human populations. We next examined different fine-tuning methods to successfully apply the model to deleteriousness prediction of missense mutations. Finally, we evaluated MutFormer's performance on multiple testing data sets. We found that MutFormer showed similar or improved performance over a variety of existing tools, including those that used conventional machine-learning approaches. We conclude that MutFormer successfully considers sequence features that are not explored in previous studies and could potentially complement existing computational predictions or empirically generated functional scores to improve our understanding of disease variants.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.