Optimal strategies in concurrent reachability games (2110.14724v1)
Abstract: We study two-player reachability games on finite graphs. At each state the interaction between the players is concurrent and there is a stochastic Nature. Players also play stochastically. The literature tells us that 1) Player B, who wants to avoid the target state, has a positional strategy that maximizes the probability to win (uniformly from every state) and 2) from every state, for every {\epsilon} > 0, Player A has a strategy that maximizes up to {\epsilon} the probability to win. Our work is two-fold. First, we present a double-fixed-point procedure that says from which state Player A has a strategy that maximizes (exactly) the probability to win. This is computable if Nature's probability distributions are rational. We call these states maximizable. Moreover, we show that for every {\epsilon} > 0, Player A has a positional strategy that maximizes the probability to win, exactly from maximizable states and up to {\epsilon} from sub-maximizable states. Second, we consider three-state games with one main state, one target, and one bin. We characterize the local interactions at the main state that guarantee the existence of an optimal Player A strategy. In this case there is a positional one. It turns out that in many-state games, these local interactions also guarantee the existence of a uniform optimal Player A strategy. In a way, these games are well-behaved by design of their elementary bricks, the local interactions. It is decidable whether a local interaction has this desirable property.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.