Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image Synthesis (2110.14709v1)

Published 27 Oct 2021 in eess.IV and cs.CV

Abstract: Existing deep learning-based approaches for histopathology image analysis require large annotated training sets to achieve good performance; but annotating histopathology images is slow and resource-intensive. Conditional generative adversarial networks have been applied to generate synthetic histopathology images to alleviate this issue, but current approaches fail to generate clear contours for overlapped and touching nuclei. In this study, We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images. The proposed network uses normalized nucleus distance map rather than the binary mask to encode nuclei contour information. The proposed sharpness loss enhances the contrast of nuclei contour pixels. The proposed method is evaluated using four image quality metrics and segmentation results on two public datasets. Both quantitative and qualitative results demonstrate that the proposed approach can generate realistic histopathology images with clear nuclei contours.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.