Papers
Topics
Authors
Recent
2000 character limit reached

Scalable Bayesian Network Structure Learning with Splines (2110.14626v2)

Published 27 Oct 2021 in cs.LG, cs.AI, and stat.ML

Abstract: The graph structure of a Bayesian network (BN) can be learned from data using the well-known score-and-search approach. Previous work has shown that incorporating structured representations of the conditional probability distributions (CPDs) into the score-and-search approach can improve the accuracy of the learned graph. In this paper, we present a novel approach capable of learning the graph of a BN and simultaneously modelling linear and non-linear local probabilistic relationships between variables. We achieve this by a combination of feature selection to reduce the search space for local relationships and extending the score-and-search approach to incorporate modelling the CPDs over variables as Multivariate Adaptive Regression Splines (MARS). MARS are polynomial regression models represented as piecewise spline functions. We show on a set of discrete and continuous benchmark instances that our proposed approach can improve the accuracy of the learned graph while scaling to instances with a large number of variables.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.