Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

DESTA: A Framework for Safe Reinforcement Learning with Markov Games of Intervention (2110.14468v3)

Published 27 Oct 2021 in cs.LG

Abstract: Reinforcement learning (RL) involves performing exploratory actions in an unknown system. This can place a learning agent in dangerous and potentially catastrophic system states. Current approaches for tackling safe learning in RL simultaneously trade-off safe exploration and task fulfillment. In this paper, we introduce a new generation of RL solvers that learn to minimise safety violations while maximising the task reward to the extent that can be tolerated by the safe policy. Our approach introduces a novel two-player framework for safe RL called Distributive Exploration Safety Training Algorithm (DESTA). The core of DESTA is a game between two adaptive agents: Safety Agent that is delegated the task of minimising safety violations and Task Agent whose goal is to maximise the environment reward. Specifically, Safety Agent can selectively take control of the system at any given point to prevent safety violations while Task Agent is free to execute its policy at any other states. This framework enables Safety Agent to learn to take actions at certain states that minimise future safety violations, both during training and testing time, while Task Agent performs actions that maximise the task performance everywhere else. Theoretically, we prove that DESTA converges to stable points enabling safety violations of pretrained policies to be minimised. Empirically, we show DESTA's ability to augment the safety of existing policies and secondly, construct safe RL policies when the Task Agent and Safety Agent are trained concurrently. We demonstrate DESTA's superior performance against leading RL methods in Lunar Lander and Frozen Lake from OpenAI gym.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.