Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Localized Super Resolution for Foreground Images using U-Net and MR-CNN (2110.14413v1)

Published 27 Oct 2021 in cs.CV, cs.LG, and eess.IV

Abstract: Images play a vital role in understanding data through visual representation. It gives a clear representation of the object in context. But if this image is not clear it might not be of much use. Thus, the topic of Image Super Resolution arose and many researchers have been working towards applying Computer Vision and Deep Learning Techniques to increase the quality of images. One of the applications of Super Resolution is to increase the quality of Portrait Images. Portrait Images are images which mainly focus on capturing the essence of the main object in the frame, where the object in context is highlighted whereas the background is occluded. When performing Super Resolution the model tries to increase the overall resolution of the image. But in portrait images the foreground resolution is more important than that of the background. In this paper, the performance of a Convolutional Neural Network (CNN) architecture known as U-Net for Super Resolution combined with Mask Region Based CNN (MR-CNN) for foreground super resolution is analysed. This analysis is carried out based on Localized Super Resolution i.e. We pass the LR Images to a pre-trained Image Segmentation model (MR-CNN) and perform super resolution inference on the foreground or Segmented Images and compute the Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR) metrics for comparisons.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.