Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

JACC: An OpenACC Runtime Framework with Kernel-Level and Multi-GPU Parallelization (2110.14340v3)

Published 27 Oct 2021 in cs.DC

Abstract: The rapid development in computing technology has paved the way for directive-based programming models towards a principal role in maintaining software portability of performance-critical applications. Efforts on such models involve a least engineering cost for enabling computational acceleration on multiple architectures while programmers are only required to add meta information upon sequential code. Optimizations for obtaining the best possible efficiency, however, are often challenging. The insertions of directives by the programmer can lead to side-effects that limit the available compiler optimization possible, which could result in performance degradation. This is exacerbated when targeting multi-GPU systems, as pragmas do not automatically adapt to such systems, and require expensive and time consuming code adjustment by programmers. This paper introduces JACC, an OpenACC runtime framework which enables the dynamic extension of OpenACC programs by serving as a transparent layer between the program and the compiler. We add a versatile code-translation method for multi-device utilization by which manually-optimized applications can be distributed automatically while keeping original code structure and parallelism. We show in some cases nearly linear scaling on the part of kernel execution with the NVIDIA V100 GPUs. While adaptively using multi-GPUs, the resulting performance improvements amortize the latency of GPU-to-GPU communications.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.