Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Ask "Who", Not "What": Bitcoin Volatility Forecasting with Twitter Data (2110.14317v2)

Published 27 Oct 2021 in q-fin.ST, cs.LG, and cs.SI

Abstract: Understanding the variations in trading price (volatility), and its response to exogenous information, is a well-researched topic in finance. In this study, we focus on finding stable and accurate volatility predictors for a relatively new asset class of cryptocurrencies, in particular Bitcoin, using deep learning representations of public social media data obtained from Twitter. For our experiments, we extracted semantic information and user statistics from over 30 million Bitcoin-related tweets, in conjunction with 15-minute frequency price data over a horizon of 144 days. Using this data, we built several deep learning architectures that utilized different combinations of the gathered information. For each model, we conducted ablation studies to assess the influence of different components and feature sets over the prediction accuracy. We found statistical evidences for the hypotheses that: (i) temporal convolutional networks perform significantly better than both classical autoregressive models and other deep learning-based architectures in the literature, and (ii) tweet author meta-information, even detached from the tweet itself, is a better predictor of volatility than the semantic content and tweet volume statistics. We demonstrate how different information sets gathered from social media can be utilized in different architectures and how they affect the prediction results. As an additional contribution, we make our dataset public for future research.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.