Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multilayer Lookahead: a Nested Version of Lookahead (2110.14254v1)

Published 27 Oct 2021 in cs.LG and cs.CV

Abstract: In recent years, SGD and its variants have become the standard tool to train Deep Neural Networks. In this paper, we focus on the recently proposed variant Lookahead, which improves upon SGD in a wide range of applications. Following this success, we study an extension of this algorithm, the \emph{Multilayer Lookahead} optimizer, which recursively wraps Lookahead around itself. We prove the convergence of Multilayer Lookahead with two layers to a stationary point of smooth non-convex functions with $O(\frac{1}{\sqrt{T}})$ rate. We also justify the improved generalization of both Lookahead over SGD, and of Multilayer Lookahead over Lookahead, by showing how they amplify the implicit regularization effect of SGD. We empirically verify our results and show that Multilayer Lookahead outperforms Lookahead on CIFAR-10 and CIFAR-100 classification tasks, and on GANs training on the MNIST dataset.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.