Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Pyramidal Blur Aware X-Corner Chessboard Detector (2110.13793v1)

Published 26 Oct 2021 in cs.CV

Abstract: With camera resolution ever increasing and the need to rapidly recalibrate robotic platforms in less than ideal environments, there is a need for faster and more robust chessboard fiducial marker detectors. A new chessboard detector is proposed that is specifically designed for: high resolution images, focus/motion blur, harsh lighting conditions, and background clutter. This is accomplished using a new x-corner detector, where for the first time blur is estimated and used in a novel way to enhance corner localization, edge validation, and connectivity. Performance is measured and compared against other libraries using a diverse set of images created by combining multiple third party datasets and including new specially crafted scenarios designed to stress the state-of-the-art. The proposed detector has the best F1- Score of 0.97, runs 1.9x faster than next fastest, and is a top performer for corner accuracy, while being the only detector to have consistent good performance in all scenarios.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)