High-Throughput and Energy-Efficient VLSI Architecture for Ordered Reliability Bits GRAND (2110.13776v2)
Abstract: Ultra-reliable low-latency communication (URLLC), a major 5G New-Radio use case, is the key enabler for applications with strict reliability and latency requirements. These applications necessitate the use of short-length and high-rate codes. Guessing Random Additive Noise Decoding (GRAND) is a recently proposed Maximum Likelihood (ML) decoding technique for these short-length and high-rate codes. Rather than decoding the received vector, GRAND tries to infer the noise that corrupted the transmitted codeword during transmission through the communication channel. As a result, GRAND can decode any code, structured or unstructured. GRAND has hard-input as well as soft-input variants. Among these variants, Ordered Reliability Bits GRAND (ORBGRAND) is a soft-input variant that outperforms hard-input GRAND and is suitable for parallel hardware implementation. This work reports the first hardware architecture for ORBGRAND, which achieves an average throughput of up to $42.5$ Gbps for a code length of $128$ at a target FER of $10{-7}$. Furthermore, the proposed hardware can be used to decode any code as long as the length and rate constraints are met. In comparison to the GRANDAB, a hard-input variant of GRAND, the proposed architecture enhances decoding performance by at least $2$ dB. When compared to the state-of-the-art fast dynamic successive cancellation flip decoder (Fast-DSCF) using a 5G polar $(128,105)$ code, the proposed ORBGRAND VLSI implementation has $49\times$ higher average throughput, $32\times$ times more energy efficiency, and $5\times$ more area efficiency while maintaining similar decoding performance.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.