Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

DPCOVID: Privacy-Preserving Federated Covid-19 Detection (2110.13760v1)

Published 26 Oct 2021 in cs.CR, cs.CV, cs.LG, and eess.IV

Abstract: Coronavirus (COVID-19) has shown an unprecedented global crisis by the detrimental effect on the global economy and health. The number of COVID-19 cases has been rapidly increasing, and there is no sign of stopping. It leads to a severe shortage of test kits and accurate detection models. A recent study demonstrated that the chest X-ray radiography outperformed laboratory testing in COVID-19 detection. Therefore, using chest X-ray radiography analysis can help to screen suspected COVID-19 cases at an early stage. Moreover, the patient data is sensitive, and it must be protected to avoid revealing through model updates and reconstruction from the malicious attacker. In this paper, we present a privacy-preserving Federated Learning system for COVID-19 detection based on chest X-ray images. First, a Federated Learning system is constructed from chest X-ray images. The main idea is to build a decentralized model across multiple hospitals without sharing data among hospitals. Second, we first show that the accuracy of Federated Learning for COVID-19 identification reduces significantly for Non-IID data. We then propose a strategy to improve model's accuracy on Non-IID COVID-19 data by increasing the total number of clients, parallelism (client fraction), and computation per client. Finally, we apply a Differential Privacy Stochastic Gradient Descent (DP-SGD) to enhance the preserving of patient data privacy for our Federated Learning model. A strategy is also proposed to keep the robustness of Federated Learning to ensure the security and accuracy of the model.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube