Papers
Topics
Authors
Recent
2000 character limit reached

SpectroscopyNet: Learning to pre-process Spectroscopy Signals without clean data (2110.13748v2)

Published 26 Oct 2021 in cs.LG and eess.SP

Abstract: In this work we propose a deep learning approach to clean spectroscopy signals using only uncleaned data. Cleaning signals from spectroscopy instrument noise is challenging as noise exhibits an unknown, non-zero mean, multivariate distributions. Our framework is a siamese neural net that learns identifiable disentanglement of the signal and noise components under a stationarity assumption. The disentangled representations satisfy reconstruction fidelity, reduce consistencies with measurements of unrelated targets and imposes relaxed-orthogonality constraints between the signal and noise representations. Evaluations on a laser induced breakdown spectroscopy (LIBS) dataset from the ChemCam instrument onboard the Martian Curiosity rover show a superior performance in cleaning LIBS measurements compared to the standard feature engineered approaches being used by the ChemCam team.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.