Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Geometric Transformer for End-to-End Molecule Properties Prediction (2110.13721v3)

Published 26 Oct 2021 in cs.LG and cs.AI

Abstract: Transformers have become methods of choice in many applications thanks to their ability to represent complex interactions between elements. However, extending the Transformer architecture to non-sequential data such as molecules and enabling its training on small datasets remains a challenge. In this work, we introduce a Transformer-based architecture for molecule property prediction, which is able to capture the geometry of the molecule. We modify the classical positional encoder by an initial encoding of the molecule geometry, as well as a learned gated self-attention mechanism. We further suggest an augmentation scheme for molecular data capable of avoiding the overfitting induced by the overparameterized architecture. The proposed framework outperforms the state-of-the-art methods while being based on pure machine learning solely, i.e. the method does not incorporate domain knowledge from quantum chemistry and does not use extended geometric inputs besides the pairwise atomic distances.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.