Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DASentimental: Detecting depression, anxiety and stress in texts via emotional recall, cognitive networks and machine learning (2110.13710v1)

Published 26 Oct 2021 in cs.CY, cs.AI, cs.CL, cs.SI, and physics.soc-ph

Abstract: Most current affect scales and sentiment analysis on written text focus on quantifying valence (sentiment) -- the most primary dimension of emotion. However, emotions are broader and more complex than valence. Distinguishing negative emotions of similar valence could be important in contexts such as mental health. This project proposes a semi-supervised machine learning model (DASentimental) to extract depression, anxiety and stress from written text. First, we trained the model to spot how sequences of recalled emotion words by $N=200$ individuals correlated with their responses to the Depression Anxiety Stress Scale (DASS-21). Within the framework of cognitive network science, we model every list of recalled emotions as a walk over a networked mental representation of semantic memory, with emotions connected according to free associations in people's memory. Among several tested machine learning approaches, we find that a multilayer perceptron neural network trained on word sequences and semantic network distances can achieve state-of-art, cross-validated predictions for depression ($R = 0.7$), anxiety ($R = 0.44$) and stress ($R = 0.52$). Though limited by sample size, this first-of-its-kind approach enables quantitative explorations of key semantic dimensions behind DAS levels. We find that semantic distances between recalled emotions and the dyad "sad-happy" are crucial features for estimating depression levels but are less important for anxiety and stress. We also find that semantic distance of recalls from "fear" can boost the prediction of anxiety but it becomes redundant when the "sad-happy" dyad is considered. Adopting DASentimental as a semi-supervised learning tool to estimate DAS in text, we apply it to a dataset of 142 suicide notes. We conclude by discussing key directions for future research enabled by artificial intelligence detecting stress, anxiety and depression.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.