Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Model-Free Prediction of Chaotic Systems Using High Efficient Next-generation Reservoir Computing (2110.13614v1)

Published 19 Oct 2021 in cs.NE and nlin.CD

Abstract: To predict the future evolution of dynamical systems purely from observations of the past data is of great potential application. In this work, a new formulated paradigm of reservoir computing is proposed for achieving model-free predication for both low-dimensional and very large spatiotemporal chaotic systems. Compared with traditional reservoir computing models, it is more efficient in terms of predication length, training data set required and computational expense. By taking the Lorenz and Kuramoto-Sivashinsky equations as two classical examples of dynamical systems, numerical simulations are conducted, and the results show our model excels at predication tasks than the latest reservoir computing methods.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)