Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Flexible Refinement Proofs in Separation Logic (2110.13559v1)

Published 26 Oct 2021 in cs.LO

Abstract: Refinement transforms an abstract system model into a concrete, executable program, such that properties established for the abstract model carry over to the concrete implementation. Refinement has been used successfully in the development of substantial verified systems. Nevertheless, existing refinement techniques have limitations that impede their practical usefulness. Some techniques generate executable code automatically, which generally leads to implementations with sub-optimal performance. Others employ bottom-up program verification to reason about efficient implementations, but impose strict requirements on the structure of the code, the structure of the refinement proofs, as well as the employed verification logic and tools. In this paper, we present a novel refinement technique that removes these limitations. Our technique uses separation logic to reason about efficient concurrent implementations. It prescribes only a loose coupling between an abstract model and the concrete implementation. It thereby supports a wide range of program structures, data representations, and proof structures. We make only minimal assumptions about the underlying program logic, which allows our technique to be used in combination with a wide range of logics and to be automated using off-the-shelf separation logic verifiers. We formalize the technique, prove the central trace inclusion property, and demonstrate its usefulness on several case studies.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube