Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Single Morphing Attack Detection using Feature Selection and Visualisation based on Mutual Information (2110.13552v1)

Published 26 Oct 2021 in cs.CV

Abstract: Face morphing attack detection is a challenging task. Automatic classification methods and manual inspection are realised in automatic border control gates to detect morphing attacks. Understanding how a machine learning system can detect morphed faces and the most relevant facial areas is crucial. Those relevant areas contain texture signals that allow us to separate the bona fide and the morph images. Also, it helps in the manual examination to detect a passport generated with morphed images. This paper explores features extracted from intensity, shape, texture, and proposes a feature selection stage based on the Mutual Information filter to select the most relevant and less redundant features. This selection allows us to reduce the workload and know the exact localisation of such areas to understand the morphing impact and create a robust classifier. The best results were obtained for the method based on Conditional Mutual Information and Shape features using only 500 features for FERET images and 800 features for FRGCv2 images from 1,048 features available. The eyes and nose are identified as the most critical areas to be analysed.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.