Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Relay Variational Inference: A Method for Accelerated Encoderless VI (2110.13422v2)

Published 26 Oct 2021 in cs.LG, cs.AI, and stat.ML

Abstract: Variational Inference (VI) offers a method for approximating intractable likelihoods. In neural VI, inference of approximate posteriors is commonly done using an encoder. Alternatively, encoderless VI offers a framework for learning generative models from data without encountering suboptimalities caused by amortization via an encoder (e.g. in presence of missing or uncertain data). However, in absence of an encoder, such methods often suffer in convergence due to the slow nature of gradient steps required to learn the approximate posterior parameters. In this paper, we introduce Relay VI (RVI), a framework that dramatically improves both the convergence and performance of encoderless VI. In our experiments over multiple datasets, we study the effectiveness of RVI in terms of convergence speed, loss, representation power and missing data imputation. We find RVI to be a unique tool, often superior in both performance and convergence speed to previously proposed encoderless as well as amortized VI models (e.g. VAE).

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.