Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Sinusoidal Flow: A Fast Invertible Autoregressive Flow (2110.13344v1)

Published 26 Oct 2021 in cs.LG

Abstract: Normalising flows offer a flexible way of modelling continuous probability distributions. We consider expressiveness, fast inversion and exact Jacobian determinant as three desirable properties a normalising flow should possess. However, few flow models have been able to strike a good balance among all these properties. Realising that the integral of a convex sum of sinusoidal functions squared leads to a bijective residual transformation, we propose Sinusoidal Flow, a new type of normalising flows that inherits the expressive power and triangular Jacobian from fully autoregressive flows while guaranteed by Banach fixed-point theorem to remain fast invertible and thereby obviate the need for sequential inversion typically required in fully autoregressive flows. Experiments show that our Sinusoidal Flow is not only able to model complex distributions, but can also be reliably inverted to generate realistic-looking samples even with many layers of transformations stacked.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)