Palindromic factorization of rich words (2110.13078v1)
Abstract: A finite word $w$ is called \emph{rich} if it contains $\vert w\vert+1$ distinct palindromic factors including the empty word. For every finite rich word $w$ there are distinct nonempty palindromes $w_1, w_2,\dots,w_p$ such that $w=w_pw_{p-1}\cdots w_1$ and $w_i$ is the longest palindromic suffix of $w_pw_{p-1}\cdots w_i$, where $1\leq i\leq p$. This palindromic factorization is called \emph{UPS-factorization}. Let $luf(w)=p$ be \emph{the length of UPS-factorization} of $w$. In 2017, it was proved that there is a constant $c$ such that if $w$ is a finite rich word and $n=\vert w\vert$ then $luf(w)\leq c\frac{n}{\ln{n}}$. We improve this result as follows: There are constants $\mu, \pi$ such that if $w$ is a finite rich word and $n=\vert w\vert$ then [luf(w)\leq \mu\frac{n}{e{\pi\sqrt{\ln{n}}}}\mbox{.}] The constants $c,\mu,\pi$ depend on the size of the alphabet.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.