Papers
Topics
Authors
Recent
2000 character limit reached

Applying Regression Conformal Prediction with Nearest Neighbors to time series data (2110.13031v1)

Published 25 Oct 2021 in stat.ME, stat.CO, and stat.ML

Abstract: In this paper, we apply conformal prediction to time series data. Conformal prediction isa method that produces predictive regions given a confidence level. The regions outputs arealways valid under the exchangeability assumption. However, this assumption does not holdfor the time series data because there is a link among past, current, and future observations.Consequently, the challenge of applying conformal predictors to the problem of time seriesdata lies in the fact that observations of a time series are dependent and therefore do notmeet the exchangeability assumption. This paper aims to present a way of constructingreliable prediction intervals by using conformal predictors in the context of time series. Weuse the nearest neighbors method based on the fast parameters tuning technique in theweighted nearest neighbors (FPTO-WNN) approach as the underlying algorithm. Dataanalysis demonstrates the effectiveness of the proposed approach.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.