Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 167 tok/s Pro
GPT OSS 120B 400 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Generating Watermarked Adversarial Texts (2110.12948v1)

Published 25 Oct 2021 in cs.CR and cs.CL

Abstract: Adversarial example generation has been a hot spot in recent years because it can cause deep neural networks (DNNs) to misclassify the generated adversarial examples, which reveals the vulnerability of DNNs, motivating us to find good solutions to improve the robustness of DNN models. Due to the extensiveness and high liquidity of natural language over the social networks, various natural language based adversarial attack algorithms have been proposed in the literature. These algorithms generate adversarial text examples with high semantic quality. However, the generated adversarial text examples may be maliciously or illegally used. In order to tackle with this problem, we present a general framework for generating watermarked adversarial text examples. For each word in a given text, a set of candidate words are determined to ensure that all the words in the set can be used to either carry secret bits or facilitate the construction of adversarial example. By applying a word-level adversarial text generation algorithm, the watermarked adversarial text example can be finally generated. Experiments show that the adversarial text examples generated by the proposed method not only successfully fool advanced DNN models, but also carry a watermark that can effectively verify the ownership and trace the source of the adversarial examples. Moreover, the watermark can still survive after attacked with adversarial example generation algorithms, which has shown the applicability and superiority.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.