Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Restore from Restored: Single-image Inpainting (2110.12822v1)

Published 25 Oct 2021 in cs.CV and cs.AI

Abstract: Recent image inpainting methods have shown promising results due to the power of deep learning, which can explore external information available from the large training dataset. However, many state-of-the-art inpainting networks are still limited in exploiting internal information available in the given input image at test time. To mitigate this problem, we present a novel and efficient self-supervised fine-tuning algorithm that can adapt the parameters of fully pre-trained inpainting networks without using ground-truth target images. We update the parameters of the pre-trained state-of-the-art inpainting networks by utilizing existing self-similar patches (i.e., self-exemplars) within the given input image without changing the network architecture and improve the inpainting quality by a large margin. Qualitative and quantitative experimental results demonstrate the superiority of the proposed algorithm, and we achieve state-of-the-art inpainting results on publicly available benchmark datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.