Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dictionary Learning Using Rank-One Atomic Decomposition (ROAD) (2110.12786v2)

Published 25 Oct 2021 in eess.SP and cs.LG

Abstract: Dictionary learning aims at seeking a dictionary under which the training data can be sparsely represented. Methods in the literature typically formulate the dictionary learning problem as an optimization w.r.t. two variables, i.e., dictionary and sparse coefficients, and solve it by alternating between two stages: sparse coding and dictionary update. The key contribution of this work is a Rank-One Atomic Decomposition (ROAD) formulation where dictionary learning is cast as an optimization w.r.t. a single variable which is a set of rank one matrices. The resulting algorithm is hence single-stage. Compared with two-stage algorithms, ROAD minimizes the sparsity of the coefficients whilst keeping the data consistency constraint throughout the whole learning process. An alternating direction method of multipliers (ADMM) is derived to solve the optimization problem and the lower bound of the penalty parameter is computed to guarantees a global convergence despite non-convexity of the optimization formulation. From practical point of view, ROAD reduces the number of tuning parameters required in other benchmark algorithms. Numerical tests demonstrate that ROAD outperforms other benchmark algorithms for both synthetic data and real data, especially when the number of training samples is small.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.