Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On the chromatic number of a family of odd hole free graphs (2110.12710v1)

Published 25 Oct 2021 in cs.DM and math.CO

Abstract: A hole is an induced cycle of length at least 4, and an odd hole is a hole of odd length. A full house is a graph composed by a vertex adjacent to both ends of an edge in $K_4$ . Let $H$ be the complement of a cycle on 7 vertices. Chudnovsky et al [6] proved that every (odd hole, $K_4$)-free graph is 4-colorable and is 3-colorable if it does not has $H$ as an induced subgraph. In this paper, we use the proving technique of Chudnovsky et al to generalize this conclusion to (odd hole, full house)-free graphs, and prove that for (odd hole, full house)-free graph $G$, $\chi(G)\le \omega(G)+1$, and the equality holds if and only if $\omega(G)=3$ and $G$ has $H$ as an induced subgraph.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube