On the chromatic number of a family of odd hole free graphs (2110.12710v1)
Abstract: A hole is an induced cycle of length at least 4, and an odd hole is a hole of odd length. A full house is a graph composed by a vertex adjacent to both ends of an edge in $K_4$ . Let $H$ be the complement of a cycle on 7 vertices. Chudnovsky et al [6] proved that every (odd hole, $K_4$)-free graph is 4-colorable and is 3-colorable if it does not has $H$ as an induced subgraph. In this paper, we use the proving technique of Chudnovsky et al to generalize this conclusion to (odd hole, full house)-free graphs, and prove that for (odd hole, full house)-free graph $G$, $\chi(G)\le \omega(G)+1$, and the equality holds if and only if $\omega(G)=3$ and $G$ has $H$ as an induced subgraph.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.