Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Fine-tuning of Pre-trained Transformers for Hate, Offensive, and Profane Content Detection in English and Marathi (2110.12687v1)

Published 25 Oct 2021 in cs.CL, cs.AI, and cs.LG

Abstract: This paper describes neural models developed for the Hate Speech and Offensive Content Identification in English and Indo-Aryan Languages Shared Task 2021. Our team called neuro-utmn-thales participated in two tasks on binary and fine-grained classification of English tweets that contain hate, offensive, and profane content (English Subtasks A & B) and one task on identification of problematic content in Marathi (Marathi Subtask A). For English subtasks, we investigate the impact of additional corpora for hate speech detection to fine-tune transformer models. We also apply a one-vs-rest approach based on Twitter-RoBERTa to discrimination between hate, profane and offensive posts. Our models ranked third in English Subtask A with the F1-score of 81.99% and ranked second in English Subtask B with the F1-score of 65.77%. For the Marathi tasks, we propose a system based on the Language-Agnostic BERT Sentence Embedding (LaBSE). This model achieved the second result in Marathi Subtask A obtaining an F1 of 88.08%.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.