Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Progressively Select and Reject Pseudo-labelled Samples for Open-Set Domain Adaptation (2110.12635v1)

Published 25 Oct 2021 in cs.CV and cs.LG

Abstract: Domain adaptation solves image classification problems in the target domain by taking advantage of the labelled source data and unlabelled target data. Usually, the source and target domains share the same set of classes. As a special case, Open-Set Domain Adaptation (OSDA) assumes there exist additional classes in the target domain but not present in the source domain. To solve such a domain adaptation problem, our proposed method learns discriminative common subspaces for the source and target domains using a novel Open-Set Locality Preserving Projection (OSLPP) algorithm. The source and target domain data are aligned in the learned common spaces class-wisely. To handle the open-set classification problem, our method progressively selects target samples to be pseudo-labelled as known classes and rejects the outliers if they are detected as from unknown classes. The common subspace learning algorithm OSLPP simultaneously aligns the labelled source data and pseudo-labelled target data from known classes and pushes the rejected target data away from the known classes. The common subspace learning and the pseudo-labelled sample selection/rejection facilitate each other in an iterative learning framework and achieves state-of-the-art performance on benchmark datasets Office-31 and Office-Home with the average HOS of 87.4% and 67.0% respectively.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.