Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Maximizing the Smallest Eigenvalue of Grounded Laplacian Matrix (2110.12576v4)

Published 25 Oct 2021 in cs.IT and math.IT

Abstract: For a connected graph $\mathcal{G}=(V,E)$ with $n$ nodes, $m$ edges, and Laplacian matrix $\boldsymbol{{\mathit{L}}}$, a grounded Laplacian matrix $\boldsymbol{{\mathit{L}}}(S)$ of $\mathcal{G}$ is a $(n-k) \times (n-k)$ principal submatrix of $\boldsymbol{{\mathit{L}}}$, obtained from $\boldsymbol{{\mathit{L}}}$ by deleting $k$ rows and columns corresponding to $k$ selected nodes forming a set $S\subseteq V$. The smallest eigenvalue $\lambda(S)$ of $\boldsymbol{{\mathit{L}}}(S)$ plays a pivotal role in various dynamics defined on $\mathcal{G}$. For example, $\lambda(S)$ characterizes the convergence rate of leader-follower consensus, as well as the effectiveness of a pinning scheme for the pinning control problem, with larger $\lambda(S)$ corresponding to smaller convergence time or better effectiveness of a pinning scheme. In this paper, we focus on the problem of optimally selecting a subset $S$ of fixed $k \ll n$ nodes, in order to maximize the smallest eigenvalue $\lambda(S)$ of the grounded Laplacian matrix $\boldsymbol{{\mathit{L}}}(S)$. We show that this optimization problem is NP-hard and that the objective function is non-submodular but monotone. Due to the difficulty to obtain the optimal solution, we first propose a na\"{\i}ve heuristic algorithm selecting one optimal node at each time for $k$ iterations. Then we propose a fast heuristic scalable algorithm to approximately solve this problem, using derivative matrix, matrix perturbations, and Laplacian solvers as tools. Our na\"{\i}ve heuristic algorithm takes $\tilde{O}(knm)$ time, while the fast greedy heuristic has a nearly linear time complexity of $\tilde{O}(km)$. We also conduct numerous experiments on different networks sized up to one million nodes, demonstrating the superiority of our algorithm in terms of efficiency and effectiveness.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.