Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep Neural Networks on EEG Signals to Predict Auditory Attention Score Using Gramian Angular Difference Field (2110.12503v1)

Published 24 Oct 2021 in cs.LG and eess.SP

Abstract: Auditory attention is a selective type of hearing in which people focus their attention intentionally on a specific source of a sound or spoken words whilst ignoring or inhibiting other auditory stimuli. In some sense, the auditory attention score of an individual shows the focus the person can have in auditory tasks. The recent advancements in deep learning and in the non-invasive technologies recording neural activity beg the question, can deep learning along with technologies such as electroencephalography (EEG) be used to predict the auditory attention score of an individual? In this paper, we focus on this very problem of estimating a person's auditory attention level based on their brain's electrical activity captured using 14-channeled EEG signals. More specifically, we deal with attention estimation as a regression problem. The work has been performed on the publicly available Phyaat dataset. The concept of Gramian Angular Difference Field (GADF) has been used to convert time-series EEG data into an image having 14 channels, enabling us to train various deep learning models such as 2D CNN, 3D CNN, and convolutional autoencoders. Their performances have been compared amongst themselves as well as with the work done previously. Amongst the different models we tried, 2D CNN gave the best performance. It outperformed the existing methods by a decent margin of 0.22 mean absolute error (MAE).

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube