Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Robust Sliding Mode Control of a Magnetic Levitation System: Continuous-Time and Discrete-Time Approaches (2110.12363v1)

Published 24 Oct 2021 in eess.SY, cs.SY, and math.OC

Abstract: This paper presents three types of sliding mode controllers for a magnetic levitation system. First, a proportional-integral sliding mode controller (PI-SMC) is designed using a new switching surface and a proportional plus power rate reaching law. The PI-SMC is more robust than a feedback linearization controller in the presence of mismatched uncertainties and outperforms the SMC schemes reported recently in the literature in terms of the convergence rate and settling time. Next, to reduce the chattering phenomenon in the PI-SMC, a state feedback-based discrete-time SMC algorithm is developed. However, the disturbance rejection ability is compromised to some extent. Furthermore, to improve the robustness without compromising the chattering reduction benefits of the discrete-time SMC, mismatched uncertainties like sensor noise and track input disturbance are incorporated in a robust discrete-time SMC design using multirate output feedback (MROF). With this technique, it is possible to realize the effect of a full-state feedback controller without incurring the complexity of a dynamic controller or an additional discrete-time observer. Also, the MROF-based discrete-time SMC strategy can stabilize the magnetic levitation system with excellent dynamic and steady-state performance with superior robustness in the presence of mismatched uncertainties. The stability of the closed-loop system under the proposed controllers is proved by using the Lyapunov stability theory. The simulation results and analytical comparisons demonstrate the effectiveness and robustness of the proposed control schemes.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube