Papers
Topics
Authors
Recent
2000 character limit reached

Off-Policy Evaluation in Partially Observed Markov Decision Processes under Sequential Ignorability (2110.12343v4)

Published 24 Oct 2021 in cs.LG, math.ST, stat.ME, and stat.TH

Abstract: We consider off-policy evaluation of dynamic treatment rules under sequential ignorability, given an assumption that the underlying system can be modeled as a partially observed Markov decision process (POMDP). We propose an estimator, partial history importance weighting, and show that it can consistently estimate the stationary mean rewards of a target policy given long enough draws from the behavior policy. We provide an upper bound on its error that decays polynomially in the number of observations (i.e., the number of trajectories times their length), with an exponent that depends on the overlap of the target and behavior policies, and on the mixing time of the underlying system. Furthermore, we show that this rate of convergence is minimax given only our assumptions on mixing and overlap. Our results establish that off-policy evaluation in POMDPs is strictly harder than off-policy evaluation in (fully observed) Markov decision processes, but strictly easier than model-free off-policy evaluation.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.