Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Quality Map Fusion for Adversarial Learning (2110.12338v1)

Published 24 Oct 2021 in cs.CV and eess.IV

Abstract: Generative adversarial models that capture salient low-level features which convey visual information in correlation with the human visual system (HVS) still suffer from perceptible image degradations. The inability to convey such highly informative features can be attributed to mode collapse, convergence failure and vanishing gradients. In this paper, we improve image quality adversarially by introducing a novel quality map fusion technique that harnesses image features similar to the HVS and the perceptual properties of a deep convolutional neural network (DCNN). We extend the widely adopted l2 Wasserstein distance metric to other preferable quality norms derived from Banach spaces that capture richer image properties like structure, luminance, contrast and the naturalness of images. We also show that incorporating a perceptual attention mechanism (PAM) that extracts global feature embeddings from the network bottleneck with aggregated perceptual maps derived from standard image quality metrics translate to a better image quality. We also demonstrate impressive performance over other methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.