Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning curves for Gaussian process regression with power-law priors and targets (2110.12231v2)

Published 23 Oct 2021 in cs.LG

Abstract: We characterize the power-law asymptotics of learning curves for Gaussian process regression (GPR) under the assumption that the eigenspectrum of the prior and the eigenexpansion coefficients of the target function follow a power law. Under similar assumptions, we leverage the equivalence between GPR and kernel ridge regression (KRR) to show the generalization error of KRR. Infinitely wide neural networks can be related to GPR with respect to the neural network GP kernel and the neural tangent kernel, which in several cases is known to have a power-law spectrum. Hence our methods can be applied to study the generalization error of infinitely wide neural networks. We present toy experiments demonstrating the theory.

Citations (16)

Summary

We haven't generated a summary for this paper yet.