Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards User Engagement Dynamics in Social Networks (2110.12193v1)

Published 23 Oct 2021 in cs.SI and cs.DB

Abstract: The engagement of each user in a social network is an essential indicator for maintaining a sustainable service. Existing studies use the $coreness$ of a user to well estimate its static engagement in a network. However, when the engagement of a user is weakened or strengthened, the influence on other users' engagement is unclear. Besides, the dynamic of user engagement has not been well captured for evolving social networks. In this paper, we systematically study the network dynamic against the engagement change of each user for the first time. The influence of a user is monitored via two novel concepts: the $collapsed~power$ to measure the effect of user weakening, and the $anchored~power$ to measure the effect of user strengthening. We show that the two concepts can be naturally integrated such that a unified offline algorithm is proposed to compute both the collapsed and anchored followers for each user. When the network structure evolves, online techniques are designed to maintain the users' followers, which is faster than redoing the offline algorithm by around 3 orders of magnitude. Extensive experiments on real-life data demonstrate the effectiveness of our model and the efficiency of our algorithms.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.