Papers
Topics
Authors
Recent
2000 character limit reached

ConformalLayers: A non-linear sequential neural network with associative layers (2110.12108v2)

Published 23 Oct 2021 in cs.LG, cs.AI, and cs.CV

Abstract: Convolutional Neural Networks (CNNs) have been widely applied. But as the CNNs grow, the number of arithmetic operations and memory footprint also increase. Furthermore, typical non-linear activation functions do not allow associativity of the operations encoded by consecutive layers, preventing the simplification of intermediate steps by combining them. We present a new activation function that allows associativity between sequential layers of CNNs. Even though our activation function is non-linear, it can be represented by a sequence of linear operations in the conformal model for Euclidean geometry. In this domain, operations like, but not limited to, convolution, average pooling, and dropout remain linear. We take advantage of associativity to combine all the "conformal layers" and make the cost of inference constant regardless of the depth of the network.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.