Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 31 tok/s Pro
2000 character limit reached

ConformalLayers: A non-linear sequential neural network with associative layers (2110.12108v2)

Published 23 Oct 2021 in cs.LG, cs.AI, and cs.CV

Abstract: Convolutional Neural Networks (CNNs) have been widely applied. But as the CNNs grow, the number of arithmetic operations and memory footprint also increase. Furthermore, typical non-linear activation functions do not allow associativity of the operations encoded by consecutive layers, preventing the simplification of intermediate steps by combining them. We present a new activation function that allows associativity between sequential layers of CNNs. Even though our activation function is non-linear, it can be represented by a sequence of linear operations in the conformal model for Euclidean geometry. In this domain, operations like, but not limited to, convolution, average pooling, and dropout remain linear. We take advantage of associativity to combine all the "conformal layers" and make the cost of inference constant regardless of the depth of the network.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube