Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

C-Planning: An Automatic Curriculum for Learning Goal-Reaching Tasks (2110.12080v1)

Published 22 Oct 2021 in cs.LG and cs.AI

Abstract: Goal-conditioned reinforcement learning (RL) can solve tasks in a wide range of domains, including navigation and manipulation, but learning to reach distant goals remains a central challenge to the field. Learning to reach such goals is particularly hard without any offline data, expert demonstrations, and reward shaping. In this paper, we propose an algorithm to solve the distant goal-reaching task by using search at training time to automatically generate a curriculum of intermediate states. Our algorithm, Classifier-Planning (C-Planning), frames the learning of the goal-conditioned policies as expectation maximization: the E-step corresponds to planning an optimal sequence of waypoints using graph search, while the M-step aims to learn a goal-conditioned policy to reach those waypoints. Unlike prior methods that combine goal-conditioned RL with graph search, ours performs search only during training and not testing, significantly decreasing the compute costs of deploying the learned policy. Empirically, we demonstrate that our method is more sample efficient than prior methods. Moreover, it is able to solve very long horizons manipulation and navigation tasks, tasks that prior goal-conditioned methods and methods based on graph search fail to solve.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube