Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

How and When Adversarial Robustness Transfers in Knowledge Distillation? (2110.12072v1)

Published 22 Oct 2021 in cs.LG

Abstract: Knowledge distillation (KD) has been widely used in teacher-student training, with applications to model compression in resource-constrained deep learning. Current works mainly focus on preserving the accuracy of the teacher model. However, other important model properties, such as adversarial robustness, can be lost during distillation. This paper studies how and when the adversarial robustness can be transferred from a teacher model to a student model in KD. We show that standard KD training fails to preserve adversarial robustness, and we propose KD with input gradient alignment (KDIGA) for remedy. Under certain assumptions, we prove that the student model using our proposed KDIGA can achieve at least the same certified robustness as the teacher model. Our experiments of KD contain a diverse set of teacher and student models with varying network architectures and sizes evaluated on ImageNet and CIFAR-10 datasets, including residual neural networks (ResNets) and vision transformers (ViTs). Our comprehensive analysis shows several novel insights that (1) With KDIGA, students can preserve or even exceed the adversarial robustness of the teacher model, even when their models have fundamentally different architectures; (2) KDIGA enables robustness to transfer to pre-trained students, such as KD from an adversarially trained ResNet to a pre-trained ViT, without loss of clean accuracy; and (3) Our derived local linearity bounds for characterizing adversarial robustness in KD are consistent with the empirical results.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.