Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Unraveling the Hidden Environmental Impacts of AI Solutions for Environment (2110.11822v2)

Published 22 Oct 2021 in cs.AI and cs.CY

Abstract: In the past ten years, artificial intelligence has encountered such dramatic progress that it is now seen as a tool of choice to solve environmental issues and in the first place greenhouse gas emissions (GHG). At the same time the deep learning community began to realize that training models with more and more parameters requires a lot of energy and as a consequence GHG emissions. To our knowledge, questioning the complete net environmental impacts of AI solutions for the environment (AI for Green), and not only GHG, has never been addressed directly. In this article, we propose to study the possible negative impacts of AI for Green. First, we review the different types of AI impacts, then we present the different methodologies used to assess those impacts, and show how to apply life cycle assessment to AI services. Finally, we discuss how to assess the environmental usefulness of a general AI service, and point out the limitations of existing work in AI for Green.

Citations (73)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.