Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels (2110.11809v1)

Published 22 Oct 2021 in cs.CV

Abstract: The most competitive noisy label learning methods rely on an unsupervised classification of clean and noisy samples, where samples classified as noisy are re-labelled and "MixMatched" with the clean samples. These methods have two issues in large noise rate problems: 1) the noisy set is more likely to contain hard samples that are in-correctly re-labelled, and 2) the number of samples produced by MixMatch tends to be reduced because it is constrained by the small clean set size. In this paper, we introduce the learning algorithm PropMix to handle the issues above. PropMix filters out hard noisy samples, with the goal of increasing the likelihood of correctly re-labelling the easy noisy samples. Also, PropMix places clean and re-labelled easy noisy samples in a training set that is augmented with MixUp, removing the clean set size constraint and including a large proportion of correctly re-labelled easy noisy samples. We also include self-supervised pre-training to improve robustness to high noisy label scenarios. Our experiments show that PropMix has state-of-the-art (SOTA) results on CIFAR-10/-100(with symmetric, asymmetric and semantic label noise), Red Mini-ImageNet (from the Controlled Noisy Web Labels), Clothing1M and WebVision. In severe label noise bench-marks, our results are substantially better than other methods. The code is available athttps://github.com/filipe-research/PropMix.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com