Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Measuring the Non-Transitivity in Chess (2110.11737v1)

Published 22 Oct 2021 in cs.AI and cs.MA

Abstract: It has long been believed that Chess is the \emph{Drosophila} of AI. Studying Chess can productively provide valid knowledge about complex systems. Although remarkable progress has been made on solving Chess, the geometrical landscape of Chess in the strategy space is still mysterious. Judging on AI-generated strategies, researchers hypothesised that the strategy space of Chess possesses a spinning top geometry, with the upright axis representing the \emph{transitive} dimension (e.g., A beats B, B beats C, A beats C), and the radial axis representing the \emph{non-transitive} dimension (e.g., A beats B, B beats C, C beats A). However, it is unclear whether such a hypothesis holds for real-world strategies. In this paper, we quantify the non-transitivity in Chess through real-world data from human players. Specifically, we performed two ways of non-transitivity quantifications -- Nash Clustering and counting the number of Rock-Paper-Scissor cycles -- on over one billion match data from Lichess and FICS. Our findings positively indicate that the strategy space occupied by real-world Chess strategies demonstrates a spinning top geometry, and more importantly, there exists a strong connection between the degree of non-transitivity and the progression of a Chess player's rating. In particular, high degrees of non-transitivity tend to prevent human players from making progress on their Elo rating, whereas progressions are easier to make at the level of ratings where the degree of non-transitivity is lower. Additionally, we also investigate the implication of the degree of non-transitivity for population-based training methods. By considering \emph{fixed-memory Fictitious Play} as a proxy, we reach the conclusion that maintaining large-size and diverse populations of strategies is imperative to training effective AI agents in solving Chess types of games.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.