Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Depth-only Object Tracking (2110.11679v1)

Published 22 Oct 2021 in cs.CV

Abstract: Depth (D) indicates occlusion and is less sensitive to illumination changes, which make depth attractive modality for Visual Object Tracking (VOT). Depth is used in RGBD object tracking where the best trackers are deep RGB trackers with additional heuristic using depth maps. There are two potential reasons for the heuristics: 1) the lack of large RGBD tracking datasets to train deep RGBD trackers and 2) the long-term evaluation protocol of VOT RGBD that benefits from heuristics such as depth-based occlusion detection. In this work, we study how far D-only tracking can go if trained with large amounts of depth data. To compensate the lack of depth data, we generate depth maps for tracking. We train a "Depth-DiMP" from the scratch with the generated data and fine-tune it with the available small RGBD tracking datasets. The depth-only DiMP achieves good accuracy in depth-only tracking and combined with the original RGB DiMP the end-to-end trained RGBD-DiMP outperforms the recent VOT 2020 RGBD winners.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.