Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

PRECAD: Privacy-Preserving and Robust Federated Learning via Crypto-Aided Differential Privacy (2110.11578v1)

Published 22 Oct 2021 in cs.CR and cs.LG

Abstract: Federated Learning (FL) allows multiple participating clients to train machine learning models collaboratively by keeping their datasets local and only exchanging model updates. Existing FL protocol designs have been shown to be vulnerable to attacks that aim to compromise data privacy and/or model robustness. Recently proposed defenses focused on ensuring either privacy or robustness, but not both. In this paper, we develop a framework called PRECAD, which simultaneously achieves differential privacy (DP) and enhances robustness against model poisoning attacks with the help of cryptography. Using secure multi-party computation (MPC) techniques (e.g., secret sharing), noise is added to the model updates by the honest-but-curious server(s) (instead of each client) without revealing clients' inputs, which achieves the benefit of centralized DP in terms of providing a better privacy-utility tradeoff than local DP based solutions. Meanwhile, a crypto-aided secure validation protocol is designed to verify that the contribution of model update from each client is bounded without leaking privacy. We show analytically that the noise added to ensure DP also provides enhanced robustness against malicious model submissions. We experimentally demonstrate that our PRECAD framework achieves higher privacy-utility tradeoff and enhances robustness for the trained models.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.