Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Energy-conserving explicit and implicit time integration methods for the multi-dimensional Hermite-DG discretization of the Vlasov-Maxwell equations (2110.11511v3)

Published 21 Oct 2021 in math.NA, cs.NA, and physics.comp-ph

Abstract: We study the conservation properties of the Hermite-discontinuous Galerkin (Hermite-DG) approximation of the Vlasov-Maxwell equations. In this semi-discrete formulation, the total mass is preserved independently for every plasma species. Further, an energy invariant exists if central numerical fluxes are used in the DG approximation of Maxwell's equations, while a dissipative term is present when upwind fluxes are employed. In general, traditional temporal integrators might fail to preserve invariants associated with conservation laws during the time evolution. Hence, we analyze the capability of explicit and implicit Runge-Kutta (RK) temporal integrators to preserve such invariants. Since explicit RK methods can only ensure preservation of linear invariants but do not provide any control on the system energy, we consider modified explicit RK methods in the family of relaxation Runge-Kutta methods (RRK). These methods can be tuned to preserve the energy invariant at the continuous or semi-discrete level, a distinction that is important when upwind fluxes are used in the discretization of Maxwell's equations since upwind provides a numerical source of energy dissipation that is not present when central fluxes are used. We prove that the proposed methods are able to preserve the energy invariant and to maintain the semi-discrete energy dissipation (if present) according to the discretization of Maxwell's equations. An extensive set of numerical experiments corroborates the theoretical findings. It also suggests that maintaining the semi-discrete energy dissipation when upwind fluxes are used leads to an overall better accuracy of the method relative to using upwind fluxes while forcing exact energy conservation.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube