Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Improving Non-autoregressive Generation with Mixup Training (2110.11115v1)

Published 21 Oct 2021 in cs.CL

Abstract: While pre-trained LLMs have achieved great success on various natural language understanding tasks, how to effectively leverage them into non-autoregressive generation tasks remains a challenge. To solve this problem, we present a non-autoregressive generation model based on pre-trained transformer models. To bridge the gap between autoregressive and non-autoregressive models, we propose a simple and effective iterative training method called MIx Source and pseudo Target (MIST). Unlike other iterative decoding methods, which sacrifice the inference speed to achieve better performance based on multiple decoding iterations, MIST works in the training stage and has no effect on inference time. Our experiments on three generation benchmarks including question generation, summarization and paraphrase generation, show that the proposed framework achieves the new state-of-the-art results for fully non-autoregressive models. We also demonstrate that our method can be used to a variety of pre-trained models. For instance, MIST based on the small pre-trained model also obtains comparable performance with seq2seq models.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube