Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Improving the Deployment of Recycling Classification through Efficient Hyper-Parameter Analysis (2110.11043v2)

Published 21 Oct 2021 in cs.CV

Abstract: The paradigm of automated waste classification has recently seen a shift in the domain of interest from conventional image processing techniques to powerful computer vision algorithms known as convolutional neural networks (CNN). Historically, CNNs have demonstrated a strong dependency on powerful hardware for real-time classification, yet the need for deployment on weaker embedded devices is greater than ever. The work in this paper proposes a methodology for reconstructing and tuning conventional image classification models, using EfficientNets, to decrease their parameterisation with no trade-off in model accuracy and develops a pipeline through TensorRT for accelerating such models to run at real-time on an NVIDIA Jetson Nano embedded device. The train-deployment discrepancy, relating how poor data augmentation leads to a discrepancy in model accuracy between training and deployment, is often neglected in many papers and thus the work is extended by analysing and evaluating the impact real world perturbations had on model accuracy once deployed. The scope of the work concerns developing a more efficient variant of WasteNet, a collaborative recycling classification model. The newly developed model scores a test-set accuracy of 95.8% with a real world accuracy of 95%, a 14% increase over the original. Our acceleration pipeline boosted model throughput by 750% to 24 inferences per second on the Jetson Nano and real-time latency of the system was verified through servomotor latency analysis.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube