Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improving the Deployment of Recycling Classification through Efficient Hyper-Parameter Analysis (2110.11043v2)

Published 21 Oct 2021 in cs.CV

Abstract: The paradigm of automated waste classification has recently seen a shift in the domain of interest from conventional image processing techniques to powerful computer vision algorithms known as convolutional neural networks (CNN). Historically, CNNs have demonstrated a strong dependency on powerful hardware for real-time classification, yet the need for deployment on weaker embedded devices is greater than ever. The work in this paper proposes a methodology for reconstructing and tuning conventional image classification models, using EfficientNets, to decrease their parameterisation with no trade-off in model accuracy and develops a pipeline through TensorRT for accelerating such models to run at real-time on an NVIDIA Jetson Nano embedded device. The train-deployment discrepancy, relating how poor data augmentation leads to a discrepancy in model accuracy between training and deployment, is often neglected in many papers and thus the work is extended by analysing and evaluating the impact real world perturbations had on model accuracy once deployed. The scope of the work concerns developing a more efficient variant of WasteNet, a collaborative recycling classification model. The newly developed model scores a test-set accuracy of 95.8% with a real world accuracy of 95%, a 14% increase over the original. Our acceleration pipeline boosted model throughput by 750% to 24 inferences per second on the Jetson Nano and real-time latency of the system was verified through servomotor latency analysis.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.