Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Attack Detection and Localization in Smart Grid with Image-based Deep Learning (2110.11007v1)

Published 21 Oct 2021 in cs.CR

Abstract: Smart grid's objective is to enable electricity and information to flow two-way while providing effective, robust, computerized, and decentralized energy delivery. This necessitates the use of state estimation-based techniques and real-time analysis to ensure that effective controls are deployed properly. However, the reliance on communication technologies makes such systems susceptible to sophisticated data integrity attacks imposing serious threats to the overall reliability of smart grid. To detect such attacks, advanced and efficient anomaly detection solutions are needed. In this paper, a two-stage deep learning-based framework is carefully designed by embedding power system's characteristics enabling precise attack detection and localization. First, we encode temporal correlations of the multivariate power system time-series measurements as 2D images using image-based representation approaches such as Gramian Angular Field (GAF) and Recurrence Plot (RP) to obtain the latent data characteristics. These images are then utilized to build a highly reliable and resilient deep Convolutional Neural Network (CNN)-based multi-label classifier capable of learning both low and high level characteristics in the images to detect and discover the exact attack locations without leveraging any prior statistical assumptions. The proposed method is evaluated on the IEEE 57-bus system using real-world load data. Also, a comparative study is carried out. Numerical results indicate that the proposed multi-class cyber-intrusion detection framework outperforms the current conventional and deep learning-based attack detection methods.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.